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Motivation

1. Personalized news recommendation methods are usually based on
a. the matching between news content

b. userinterest inferred from historical behaviors.
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a. Recommendation
i.  have difficulties in making accurate recommendations to cold-start users.

ii. tendto recommend similar news with those users have read.

flé

cold-start users

e

similar news




Motivation

1. Personalized news recommendation methods are usually based on
a. the matching between news content

b. userinterest inferred from historical behaviors.

2. Problem

a. Recommendation
i.  have difficulties in making accurate recommendations to cold-start users.

ii. tendto recommend similar news with those users have read.

3. Solution: Popular News
i.  usually contain important information and can attract users with different interests.

1=
o=

i. areusually diverse in content and topic.
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Figure 2: The overall framework of PP-Rec.
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News Popularity Score

1. Purpose:
a. predict time-aware news
popularity (Sp)

N

CTR recency content
| Y J

candidate news

_____________________________

news popularity 5y 2. Based on
score . a. news content
embe b. recency
Time-aware News : c. nearrealtime CTR information.
Popularity Predictor
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Reasons for Choosing These Elements

Time-aware News
Popularity Predictor

A

1. near real-time CTR(Click-Through Rate ) J) e B
o  Popularity of a news article usually dynamically changes. CTR recency content
;'41

o  Using recent ¢ hours (Ci) ~ candidate news
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o News content is time-independent and cannot capture the dynamic change of
news popularity.

o  The duration between the publish time and the prediction time.
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Reasons for Choosing These Elements

Time-aware News
Popularity Predictor

o

. near real-time CTR(Click-Through Rate ) JAN
o  Popularity of a news article usually dynamically changes. CTR recency content
M —_—
o  Using recent ¢ hours (Ci) candidate news

2. recency

o News content is time-independent and cannot capture the dynamic change of
news popularity.

o  The duration between the publish time and the prediction time.

3. news content
o CTR needs to accumulate sufficient user interactions

o News content is very informative for predicting news popularity(e.g. earthquakes)
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Time-aware News Popularity Predictor

l. p. : content-based news popularity
o  content embedding (n)

2. p, : recency-aware content-based news
popularity
o  recency embedding (r)

3. p :time-aware content-based news
popularity
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Time-aware News Popularity Predictor
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Personalized matching score

l. Purpose
o measure the user’s personal interest in the content of candidate news

9. Based on personalized Sl )
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% Personalized matching score

l. Purpose
o measure the user’s personal interest in the content of candidate news

2. Basedon
o news embedding ST ais —
) ddin
o user embedding e |
izt Knowledge-aware
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Knowledge-aware News Encoder

l. Purpose
o learn news representation(n) from both text and entities in news title.

Knowledge-aware News Encoder
n news embedding
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Knowledge-aware News Encoder

l. Purpose
o learn news representation(n) from both text and entities in news title.
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“% Scenario (1) relatedness

.MAC..Apple... ..MAC..Lancome...




MHSA

1. Multi-Head Self-Attention

2. Propose
o learn entity/word representations by capturing their relatedness
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“* Scenario(2) Textual Contexts

“Why do MAC need an ARM CPU?” “MAC cosmetics expands AR try-on”

Computer Cosmetic



MHCA

1. Multi-Head Cross-Attention

2. Propose
o learn entity/word representations from the textual contexts
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News embedding

l. entity-based news representation e
o  Entity Attention

2. word-based news representation w
o Word Attention

3. news representation n
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Framework of PP-Rec

{

i s | ranking score

|}

' .

: Personalized Aggregator

]

: news popularity - personalized

i Sp ' %

' score : matching score

: user
: ‘dding embedding
: : _.;Ifi:Tin"-t} aware News ' "I'ij.;.j.j.;.;.jii:':"l;(nOwiec ge-aware Popularity-aware

: Popularity Predictor News Encoder User Encoder

I

: . 1

1 == E

i CTR recency content =8 £ -
] AR ecency nte 9 = BT

' , ! | [hlstorlcal clicked news
] L

1 ) { T

I R

' candidate news Rtarget user
]

- W W W e W W W W™ WE e W Ww e W W W e e

29



Q

Personalized matching score

1. Purpose:
o measure the user’s personal interest in the content of candidate news

2. Based on
o news embedding user
) R o beddi
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Popularity-aware User Encoder

l. Purpose

o  Measure user interest model.
2. Based on

o content of user clicked news .

o popularity of user clicked news.
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Reasons for Choosing These Elements

~k B

1. “Justin Timberlake unveils the song” popularity _content

o  User likes the songs of “Justin Timberlake”.

2. “House of Representatives impeaches President Trump”
o Itis popular and contains breaking information.



Reasons for Choosing These Elements

2.

“Justin Timberlake unveils the song” | userinterest
o  User likes the songs of “Justin Timberlake”.

“House of Representatives impeaches President Trump”
o Itis popular and contains breaking information.

Eliminating the popularity bias in user behaviors can help more accurately.
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Popularity-aware User Encoder

l. content-popularity joint attention network(CPJA)
o alleviate popularity bias
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Popularity-aware User Encoder

5. user interest embedding
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News Ranking Score

news
embedding |

user
! embedding

{ \
: m ranking score )
I “f" I
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I I

3=(1—77)'3m+77'8p, (3)

® S :ranking score

® 7):user representation u via a dense network with sigmoid activation.
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Loss Function

1. BPR pairewise loss
o Bayesian Personalized Ranking
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Loss Function

1. BPR pairewise loss

B IE N IES B N DS B

=
o
=
o

«— jtem —

«~— jtem —

Q_



Loss Function

1. BPR pairewise loss
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1. BPR pairewise loss
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Dataset

e MSN

@)
@)

Microsoft News website
2019/10/19-2019/4 /23

® Feeds

(@]
O

commercial news feeds in Microsoft
2020/1/23 - 2020/4/23

# News  # Users # Impressions  # Clicks
MSN 161,013 490,522 1,100,000 1,675,084
Feeds 4,117,562 98,866 1,100,000 2,384,976
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Performance Evaluation
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Methods MSN Feeds
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
ViewNum | 54.124+0.00 24.95+0.00 26.074+0.00 31.56+0.00 | 58.99+0.00 23.714+0.00 26.83+0.00 32.38+0.00
RecentPop | 55.674+0.00 28.72+0.00 30.45+0.00 36.62+0.00 | 56.27+0.00 24.934+0.00 28.374+0.00 33.89+0.00
SCENE 57.89+0.02 27.41+0.01 28.81+0.02 34.36%+0.03 | 60.82+0.03 27.294+0.03 31.25+0.02 36.56+0.03
CTR 65.72+0.00 30.50+0.00 32.794+0.00 38.68+0.00 | 66.40+0.00 30.29+0.00 35.53+0.00 40.72+0.00
EBNR 63.90+0.20 30.13+0.12 32.25+0.14 38.05+0.14 | 64.88+0.04 28.91+0.03 33.294+0.03 38.87+0.02
DKN 64.16+0.19 30.63+0.10 32.984+0.12 38.66+0.11 | 66.30+0.11 30.25+0.06 35.01+0.07 40.55+0.06
NAML 66.06+0.17 32.10£0.10 34.734+0.11 40.43+0.11 | 67.50£0.09 31.07+0.08 36.08+0.10 41.61£0.10
NPA 65.83+0.20 31.70+0.09 34.2440.10 39.96+0.10 | 67.25+0.10 30.80+0.05 35.72+0.07 41.25+0.07
NRMS 66.34+0.16 32.00+0.08 34.684+0.09 40.3940.09 | 68.10+0.05 31.474+0.03 36.61+0.03 42.12+0.03
LSTUR 66.69+0.16 32.12+0.05 34.76+0.05 40.51+0.04 | 67.43+0.16 30.95+0.11 35.92+0.16 41.45+0.14
KRED 66.54+0.17 31.97+0.14 34.65+0.14 40.384+0.14 | 67.67+0.18 31.16+0.13 36.19+0.16 41.72+0.16
PP-Rec 71.05+0.09 39.34+0.08 44.01+0.13 50.46+0.20 | 72.11+0.21 32.42+0.12 38.13+0.08 43.50+0.13




popularity-based news recommendations
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Methods MSN Feeds
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
" ViewNum | 54.124+0.00 24.954+0.00 26.074+0.00 31.56+0.00 | 58.994+0.00 23.71+0.00 26.83+0.00 32.38+0.00
RecentPop | 55.674+0.00 28.72+0.00 30.45+0.00 36.62+0.00 | 56.27+0.00 24.934+0.00 28.374+0.00 33.89+0.00
SCENE | 57.894+0.02 27.41+0.01 28.81+0.02 34.36+0.03 | 60.82+0.03 27.29+0.03 31.254+0.02 36.56+0.03
. CTR 65.72+0.00 30.50+0.00 32.7940.00 38.68+0.00 | 66.40+0.00 30.294+0.00 35.53+0.00 40.72+0.00
EBNR 63.90+0.20 30.13+0.12 32.254+0.14 38.05+0.14 | 64.88+0.04 28.91+0.03 33.29+0.03 38.87+0.02
DKN 64.16+0.19 30.63£0.10 32.984+0.12 38.66+0.11 | 66.30+0.11 30.25+0.06 35.01+£0.07 40.55+0.06
NAML 66.06+0.17 32.10£0.10 34.734+0.11 40.43+0.11 | 67.50£0.09 31.07+0.08 36.08+0.10 41.61£0.10
NPA 65.83+0.20 31.70+0.09 34.2440.10 39.96+0.10 | 67.25+0.10 30.80+0.05 35.72+0.07 41.25+0.07
NRMS 66.34+0.16 32.00+0.08 34.684+0.09 40.394+0.09 | 68.10+0.05 31.474+0.03 36.61+0.03 42.12+0.03
LSTUR | 66.694+0.16 32.12+0.05 34.76+0.05 40.51+0.04 | 67.43+0.16 30.95+0.11 35.92+4+0.16 41.45+0.14
KRED 66.54+0.17 31.97+0.14 34.65+0.14 40.38+0.14 | 67.67+0.18 31.16+0.13 36.19+0.16 41.72+0.16
PP-Rec 71.05+0.09 39.34+0.08 44.01+0.13 50.46+0.20 | 72.11+0.21 32.42+0.12 38.13+0.08 43.50+0.13
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Popularity-based News Recommendations

® ViewNum
o use number of news view
® RecentPop
o use number of news view in recent time

e SCENE

o use view frequency
o adjusting the ranking of news with same topics based on their popularity

e CTR

o usenewsCTR



Personalized News Recommendations

t-

Methods MSN Feeds
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
ViewNum | 54.12+0.00 24.95+0.00 26.074+0.00 31.564+0.00 | 58.99+0.00 23.714+0.00 26.83+0.00 32.38+0.00
RecentPop | 55.674+0.00 28.72+0.00 30.45+0.00 36.62+0.00 | 56.27+0.00 24.934+0.00 28.374+0.00 33.89+0.00
SCENE | 57.894+0.02 27.41+0.01 28.81+0.02 34.36+0.03 | 60.82+0.03 27.29+0.03 31.254+0.02 36.56+0.03
CTR 65.72+0.00 30.50+0.00 32.7940.00 38.68+0.00 | 66.40+0.00 30.294+0.00 35.53+0.00 40.72+0.00
f EBNR 63.90+0.20 30.13+0.12 32.254+0.14 38.05+0.14 | 64.88+0.04 28.91+0.03 33.29+0.03 38.87+0.

DKN 64.16+0.19 30.63£0.10 32.984+0.12 38.66+0.11 | 66.30+0.11 30.25+0.06 35.01+£0.07 40.55+0.06
NAML 66.06+0.17 32.10£0.10 34.734+0.11 40.43+0.11 | 67.50£0.09 31.07+0.08 36.08+0.10 41.61£0.10
NPA 65.83+0.20 31.70+0.09 34.2440.10 39.96+0.10 | 67.25+0.10 30.80+0.05 35.72+0.07 41.25+0.07
NRMS 66.34+0.16 32.00+0.08 34.684+0.09 40.394+0.09 | 68.10+0.05 31.474+0.03 36.61+0.03 42.12+0.03
LSTUR | 66.694+0.16 32.12+0.05 34.76+0.05 40.51+0.04 | 67.43+0.16 30.95+0.11 35.92+4+0.16 41.45+0.14

66.54+0.17 31.97+0.14 34.654+0.14 40.384+0.14 | 67.67+0.18 31.164+0.13 36.19+0.16 41.72+0.1
71.05+0.09 39.34+0.08 44.01+0.13 50.46+0.20 | 72.11+0.21 32.42+0.12 38.13+0.08 43.50+0.13




Personalized News Recommendations

e EBNR e NRMS

o  GRU network to learn user representations o multi-head self-attention
e DKN networks

o knowledge-aware CNN network e LSTUR
e NAML o  GRU network to learn

short-term interests
o user ID to learn longterm
interests

e NPA e KRED

o attention networks

o attention network
o from news title, body and category

o knowledge graph
attention network
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# News # Users # Impressions  # Clicks
MSN 161,013 490,522 1,100,000 1,675,084
Feeds 4,117,562 98,866 1,100,000 2,384,976
Methods MSN Feeds

AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
ViewNum | 54.124+0.00 24.95+0.00 26.074+0.00 31.56+0.00 | 58.99+0.00 23.714+0.00 26.83+0.00 32.38+0.00
RecentPop | 55.674+0.00 28.72+0.00 30.45+0.00 36.62+0.00 | 56.274+0.00 24.93+0.00 28.37+0.00 33.89+0.00
SCENE | 57.89+0.02 27.41+0.01 28.81+0.02 34.36+0.03 | 60.82+0.03 27.294+0.03 31.25+0.02 36.56+0.03
CTR 65.72+0.00 30.504+0.00 32.794+0.00 38.68+0.00 | 66.40+0.00 30.294+0.00 35.53+0.00 40.72+0.00
EBNR 63.90+0.20 30.13+0.12 32.25+0.14 38.05+0.14 | 64.88+0.04 28.91+0.03 33.29+0.03 38.87+0.02
DKN 64.16+0.19 30.63+0.10 32.98+0.12 38.66+0.11 | 66.30+0.11 30.25+0.06 35.01+0.07 40.55+0.06
NAML 66.06+0.17 32.10+0.10 34.73+0.11 40.4340.11 | 67.50+0.09 31.07+0.08 36.08+0.10 41.61+0.10
e NPA | 65.8310.20 31.70+0.09 34.24+0.10 39.96+0.10 | 67.25+0.10 30.80+0.05 35.72+0.07 41.254+0.07
NRMS 66.34+0.16__32.004+0.08 34.684+0.09 _40.39+0.09 | 68.10+0.05 31.474+0.03 36.61+0.03 42.12+0.03
LSTUR | 66.69+0.16 32.1240.05 34.764+0.05 40.514+0.04 | 67.43+0.16 30.95+0.11 35.92+0.16 41.45+0.14
KRED 66.5440.17 31.97+0.14 34.65+0.14 40.384+0.14 | 67.67+0.18 31.164+0.13 36.194+0.16 41.72+0.16
PP-Rec 71.054+0.09 39.34+0.08 44.01+0.13 50.46+0.20 | 72.11+0.21 32.424+0.12 38.13+0.08 43.50+0.13




Performance Evaluation

e popularity-based news recommendations
o cannot recommended personalized interests news

® personalized news recommendations

o ignore the popularity of each news leading to bias in user interests.
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Performance on Cold-Start Users

Choose methods which is good performs in Evaluation.

all of them is personalized news recommendations
K=0,123>5

70
Dataset: MSN
65
S 60
<
55 7 " I LSTUR
E KRED B PP-Rec
NRMS
50! 1% DT =N - WG == 1SSTIII
3 5

users with K click behaviors
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Diversity Evaluation (ILAD)

® Intra-list average diversity

° Sij

o the similarity between
recommendation i and j

o U
o the set of all users

ILAD = mean mean(1 - §; ;)
ueU | jeR,,i#j

user A’s

Top 3 news recommendation similarity

1 2 3
1 - 0.3 0.1
2 0.3 - 0.9
3 0.1 0.9 -
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Diversity Evaluation (ILAD)

=4~ DKN [—0—- LSTUR] [-—- NRMS ]
-4+ KRED  ==x*+ NPA —e— PP-Rec
—*=- GRU = NAML

Figure 7: Intra-list average distance of news recom-
mended by different methods.
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Diversity Evaluation (New Topic Ratio)

~~- DKN  =#- LSTUR =+=- NRMS
® Topic similarity between 4 KRED - NPA —e— PP-Rec
—— GRU  —— NAML

o recommended news
o users’ historical clicked news

2 = B2
o o =
& © N

New Topic Ratio

2
o
@

el
o
o

1 3 5] 7 9
Top K

Figure 8: New topic ratio of news recommended by
different methods.



Ablation Study
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Figure 9: Effectiveness of personalized matching score
and news popularity score.
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Ablation Study
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news popularity sj

score
nel

embe

Time-aware News K
Popularity Predictor

: ‘
L® '
recency

1

candidate news

E-



Ablation Study

72.0

68.0 1 ]
o B 2\| B
D 64.01 v /
< RBZY PF-Rec

/7. WIb news recency
60.01 E== w/0 news content
N w/o CT

560 KXX1 E=NN\N KX |

AUC——  nDCG@TU

AN

N

o
nDCG@10

w
=
o

32.0

Figure 10: Effectiveness of different information used

for news popularity prediction.

news popularity S

score
nel

embe
Time-aware News K
Popularity Predictor

L B

receﬁ'cy content
J

candidate news

_____________________________

\:1-



Ablation Study

72.0

68.01

\

B PP-Rec
“//. wlo news recency

8640-
=< %4

60.01 [EES 176 news cditent
N w/o CTR
560_&&0 [EERNN\N KO 7 ‘
AUC nDCG@10

AN

N

o
nDCG@10

w
=
o

32.0

Figure 10: Effectiveness of different information used

for news popularity prediction.

news popularity s]

score
ne

embe

Time-aware News K
Popularity Predictor
| : 1
4l -

CTR content
| J
Al

candidate news

_____________________________

Q



Case Study (with LSTUR)

59

Historical clicked news of the user

Top recommendations from PP-Rec

Top recommendations from LSTUR

Title Title Popularity Title Popularity
Frustrated Antonio Brown has active For grandfather charged in girl’s cruise Jared Goff regression: Here’s exactly
. . . : 0.156 " 0.031
morning on twitter. ship death, video could be key. what’s gone wrong for rams.
Tom Brady: Wher\ it comes to the future, Patriots-Ravens part Il seems inevitable.| 0.016 Bill Belichick |rr|tate.d with questions 0.036
my focus is on this season. about Antonio brown.
Odell Beckham Jr. trolled Steelers coach Jared Goff regression: Here’s exactly 0.031 Patriots-Ravens part Il seems inevitable.] 0.016

Mike Tomlin with yawn celebration.

what’s gone wrong for rams.

Figure 11: Top news recommended by PP-Rec and LSTUR. The clicked news are in red and bold.




Case Study (with LSTUR)
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Mike Tomlin with yawn{% '

arical clicked news of the user Top recommendations from PP-Rec Top recommendations from LSTUR
Title Title Popularity| Title Popularity
ted Antonio Brown has active For grandfather charged in girl’s cruise flared Goff regression: Here’s exactl‘y‘
. . _ . X 0.156 . 0.031
morning on twitter. ship death, video could be key. what’s gone wrong for rams.
Tom Brady: Whep it comes to thef ¥ Patiiofs Revenspar || seems Inctabiel 110616 Bill Belichick |rntate.d with questions 0.036
my focus is on this season. 2}\; about Antonio brown.
Odell Beckham Jr. trolled - coach Jared Goff regression: Here’s exactly 0.031 | L Patriots-Ravens nart il ssems inevitabid.| 0.016
what’s gone wrong for rams. S J

Figure 11: Top news recommended by PP-Rec and LSTUR. The clicked news are in red and bold.
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Case Study (with LSTUR)
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arical clicked news of the user

Top recommendations from PRsRe

Title

Title

ted Antonio Brown has active

morning on twitter.

Tom Brady: When it comes to the

For grandfather charged in girl’s crufgt #

ship death, video could be key.

Patriots-Ravens part Il seems inevitall§

my focus is on this season. ] 2}\:
v:-‘r.

Odell Beckham Jr. trolled -

Jared Goff regression: Here’s exactly
what’s gone wrong for rams.

Top recommendations from LSTUR

Title Popularity

Y

Jared Goff regression: Here’s exactly
what’s gone wrong for rams.

0.031

Bill Belichick irritated with questions
about Antonio brown.

0.036

Patriots-Ravens part Il seems inevitable.

0.016

Mike Tomlin with yawn{% '

Figure 11: Top news recommended by PP-Rec and LSTUR. The clicked news are in red and bold.
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Case Study (with LSTUR)
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Historical clicked news of the user

Top recommendations from PP-Rec

Top recommendations from LSTUR

Title Title Popularity Title Popularity
Frustrated Antonio Brown has active For grandfather charged in girl’s cruise Jared Goff regression: Here’s exactly
. . . » 0.156 " 0.031
morning on twitter. ship death, video could be key. what’s gone wrong for rams.
Tom Brady: Wher\ it comes to the future, Patriots-Ravens part Il seems inevitable.| 0.016 Bill Belichick |rr|tate.d with questions 0.036
my focus is on this season. about Antonio brown.
Odell Beckham Jr. trolled Steelers coach Jared Goff regression: Here’s exactly 0031 | | Patriots-Ravens part Il seems inevitable.| 0.016

Mike Tomlin with yawn celebration.

what’s gone wrong for rams.

Figure 11: Top news recommended by PP-Rec and LSTUR. "
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Conclusion

® Propose a new news recommendation method named PP-Rec

o deal with cold-start and diversity problems
o  consider both the personal interest of users and the popularity of candidate news.

® Propose a unified model to predict time-aware news popularity

® Propose a knowledge-aware news encoder
o to generate news content embeddings from news texts and entities.

® Propose a popularity-aware user encoder
o to generate user interest embeddings from the content and popularity of clicked news.
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